

VISHAY INTERTECHNOLOGY, INC.

INTERACTIVE data book

THICK FILM POWER RESISTORS

VISHAY SFERNICE

VSE-DB0019-0302

Notes:

- 1. To navigate:
 - a) Click on the Vishay logo on any datasheet to go to the Contents page for that section. Click on the Vishay logo on any Contents page to go to the main Table of Contents page.
 - b) Click on the products within the Table of Contents to go directly to the datasheet.
 - c) Use the scroll or page up/page down functions.
 - d) Use the Adobe® Acrobat® page function in the browser bar.
- To search the text of the catalog use the Adobe® Acrobat® search function.

THICK FILM POWER RESISTORS
Vishay Sfernice

_ =

DISCRETE	RECTIFIERS	Schottky (single, dual)
SEMICONDUCTORS		Standard, Fast and Ultra-Fast Recovery (single, dual)
		Clamper/Damper
		Bridge
		Superectifier®
	SMALL-SIGNAL DIODES	Schottky and Switching (single, dual)
		Tuner/Capacitance (single, dual)
		Bandswitching
		PIN
	ZENER & SUPPRESSOR DIODES	Zener Diodes (single, dual)
	ZENEN & SUPPRESSUN DIUDES	
	MOOFET	TVS (TransZorb® Automotive, Arrays) Power MOSFETs
	MOSFETs	JFETs
	RF TRANSISTORS	Bipolar Transistors (AF and RF)
	III IIIAIOIOIOIO	Dual Gate MOSFETs
		MOSMICs®
	OPTOELECTRONICS	
	UPTUELECTRUNICS	IR Emitters, Detectors and IR Receiver Modules
		Opto Couplers and Solid State Relays
		Optical Sensors
		LEDs and 7 Segment Displays
		Infrared Data Transceiver Modules
		Custom products
	ICs	Power ICs
		Analog Switches
PASSIVE COMPONENTS	CAPACITORS	Tantalum Capacitors
I ASSIVE COMPONENTS		Solid Tantalum Capacitors
		Wet Tantalum Capacitors
		Ceramic Capacitors
		Multilayer Chip Capacitors
		Disc Capacitors
		Film Capacitors
		Power Capacitors
		Heavy Current Capacitors
		Aluminum Capacitors
	RESISTIVE PRODUCTS	Foil Resistors
		Film Resistors
		Thin Film Resistors
		Thick Film Resistors
		Metal Oxide Film Resistors
		Carbon Film Resistors
		Wirewound Resistors
		Variable Resistors
		Cermet Variable Resistors
		Wirewound Variable Resistors
		Conductive Plastic Variable Resistors
		Networks/Arrays
		Non-Linear Resistors
		NTC Thermistors
		PTC Thermistors
	MAGNETICS	Inductors
		Transformers
INTEGRATED MODULES	DC/DC CONVERTERS	
STRESS SENSORS AND TRANSDUCERS	STRAIN GAGES AND INSTRUME	NTS
I NAMODUCENO	PHOTOSTRESS® INSTRUMENTS	
	TRANSDUCERS	Load Cells
		Weighing Systems
		g Ojotomo

ONE OF THE WORLD'S LARGEST MANUFACTURERS OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENTS

Vishay Sfernice Thick Film Power Resistors

Vishay S.A.

199, bd de la Madeleine B.P. 1159 06003 Nice Cedex 1 France

Phone: +33 4 93 37 27 27 Fax: +33 4 93 37 27 26 www.vishay.com

LIFE SUPPORT APPLICATIONS LIMITATIONS

VISHAY S.A. does not recommend the use of any of its standard products in life support applications where a failure or malfunction can be reasonably expected to cause failure of life support device or to significantly affect its safety or affectiveness

In particular above recommendations apply to all devices designated as "Life critical" by US drug administration or equivalent in other countries.

These products are sold to the buyer on the condition that it agrees to hold VISHAY S.A. harmless against any claim based on the use of this product in such application and to indemnify any loss that it may incur as a result of such claim. In any case VISHAY S.A. strongly recommend the integration of a "First proof failure" security system.

NOTICE

The information in this catalog has been carefully checked for accuracy, and though it is believed to be correct, no warranty, either express or implied, is made as to either its applicability to, or its compatibility with, specific requirements; nor does Vishay Intertechnology, Inc. and its affiliates assume any responsibility for correctness of this information, nor for damages consequent to its use.

All such printed materials are not legally binding unless confirmed in writing pursuant to §§463 and 480 11 of the German Code of Civil Law.

Warning Regarding Life Support Applications

Not all products listed in this catalog are generally recommended for use in life support systems where a failure or malfunction of the component may directly threaten life or cause injury.

The user of products in such applications assumes all risks of such use and will agree to hold Vishay Intertechnology, Inc. and all the companies whose products are represented in this catalog, harmless against all damages.

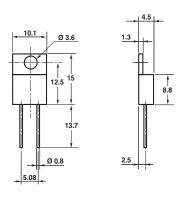
TO 22	TO 220 CASE								
MODEL	DATA		RESISTANCE RANGE	TOLERANCES			DIMENSIONS		
	SHEETS	RATING	STANDARD SERIES		LIMITS	TCR		NO.	
	NO.	W	Ω	%	°C	ppm/°C	mm		
RTO 20	50005	25°C		± 1%		± 150	10.1 x 15 x 4.5	2	
		20W	0.046Ω to $1M\Omega$	to	- 55°C	R > 1Ω			
		25°C		± 10%	+ 155°C	± 300			
RTO 50	500035	50W				R < 1Ω	10.1 x 15 x 4.5	5	

FOR M	FOR MOUNTING ONTO A HEATSINK 5W TO 50W							
RCH 5		25°C 5W				± 150	16.6 x 9 x 15	17
RCH 10	50006	10W	0.24Ω to $1 M\Omega$	± 1%	- 55°C + 125°C	R > 1Ω	19 x 11 x 15	17
RCH 25	50006	25W		± 10%	+ 125 C	± 250	28 x 14 x 15	17
RCH 50		50W				R > 1Ω	47.8 x 15.5 x 15	17

100W								
RPH 100	50046	25°C		± 1%	- 55°C	±300 < 1Ω		8
		100W	0.092Ω to $1M\Omega$	to ± 10%	+ 125°C	± 150 > 1Ω	65.5 x 46.7 x 21.6	

SOT 227	BC	ASE - 2	20W TO 20	oow					
MODEL	DATA SHEET	POWER RATING AT 25°C	RESISTANCE RANGE	TOLERANCE FOR EACH RESISTOR	ELECTRICAL DIAGRAMS	LIMITS	TYPICAL TCR	DIMEN- SIONS	PAGE NO.
	NO	W	Ω	%		°C	ppm/°C	mm	
RTOP 200		200W	0.046Ω to 1MΩ						21
RTOP 100		100W						38 x	21
DRTOP 100		100W	0.092Ω to 1MΩ				±300 R<1Ω	25 x	21
DRTOP 50	50045	50W		± 1%	RI	- 55°C		10	21
TRTOP 40		40W		to ± 10%		+ 125°C	± 150 R > 1Ω		21
TRTOP 30		30W	0.046Ω to 1MΩ						21
QRTOP 35		35W							21
QRTOP 20		20W			卓 <i>m</i> 卓				21

HIGH F	HIGH POWER FOR MOUNTING ONTO A HEATSINK - 250W AND 500W							
MODEL	DATA	POWER RATING	RESISTANCE RANGE	TOLERANCES	TEMP.	TYPICAL	DIMEN-	PAGE
	SHEET		STANDARD SERIES		LIMITS	TCR	SIONS	NO.
	no	W	Ω	%	°C	ppm/°C	mm	
RPS 250D	50007	70°C		± 1%	- 55°C	± 300	73 x 60	11
		250W	0.24Ω to $1M\Omega$	to	+125°C	<1Ω	x 24.5	
RPS 500	50047	70°C		± 10%		± 150		14
		500W				> 1Ω		


Power Resistor Thick Film Technology

The well known TO 220 package is compact and easy to mount.

DIMENSIONS in millimeters

RTO 20F - LEADED

MECHANICAL SPECIFICATIONS

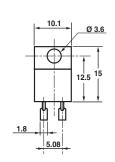
Mechanical ProtectionInsulated CaseResistive ElementThick FilmConnectionsTinned copperWeight2g max.

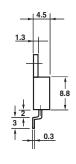
DIMENSIONS

Standard Package TO 220 Insulated case

ENVIRONMENTAL SPECIFICATIONS

Temperature Range - 55°C to + 155°C
Climatic Category 55/155/156
Sealing Sealed container
Solder immersion


FEATURES


- 20 Watt at 25°C Heatsink Mounted
- · High Power Dissipation to size ratio
- Wide Resistance Range
- Negligible Inductance
- · Easy Mounting
- TO220 package: Compact and easy to mount.

Two versions of this thick film resistor are available:

- · A Radial Leaded version for PCB Mounting.
- · A Flat Lead version for Surface Mounting.

RTO 20C - FOR SURFACE MOUNTING

Tolerance unless otherwise specified: ± 0.4mm

ELECTRICAL SPECIFICATIONS				
Resistance Range	0.046Ω to $1M\Omega$			
Tolerances (Standard)	± 1% to ± 10%			
Dissipation and Associated:	Onto a heatsink			
Thermal Resistance	20W at + 25°C			
	Rтн (j-c): 6.5°C/W			
	free air:			
	2W at + 25°C			
Temperature Coefficient	See Performance table			
Standard	± 150ppm/°C			
Limiting Element Voltage	250V			
Dielectric Strength	2000VRMS			
	(Between Terminals and Heatsink)			
Insulation Resistance	$\geq 10^6 \text{M}\Omega$			
Inductance	≤ 0.1 µH			
Critical Resistance	3.12 kΩ			

Power Resistor Thick Film Technology

Vishay Sfernice

PERFORMANCE						
TESTS	CONDITIONS	TYPICAL DRIFTS				
Momentary Overload	2Pr/5s Us < 1.5UL	± (0.25% ± 0.05)				
Climatic Sequence	5 cycles	± (0.5% ± 0.05) nominal power Pn - 55°C to + 155°C				
Load Life	1000h Pr at + 25°C	± (1% ± 0.05)				
Humidity (Steady State)	56 days R.H. 95%	± (0.5% ± 0.05)				
High Temperature Exposure	1000h - 40% Pr at + 100°C	± (0.5% ± 0.05)				

SPECIAL FEATURES						
Resistance Values	≤ 0.046	≤ 0.1 ≤ 0.5				
Tolerances	± 1% at ± 10%					
Temperature Standard Coefficient	± 300ppm/°C	± 250ppm/°C	± 150ppm/°C			

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature).

Maximum working temperature must not exceed 155°C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{[R_{TH} (j-c) + R_{TH} (c-a)]} (1)$$

P: expressed in W

 ΔT : difference between maximum working temperature and room temperature.

R_{TH:} (j-c): thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component: (Special Features Table)

RTH: (c-a): thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal resistance of the heatsink itself (type, shape) and the quality of the fastening device.

Example:

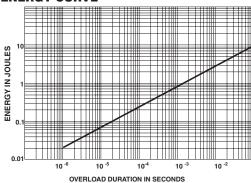
RTH: (c-a) for RTO 20 power rating 10W at ambient temperature + 25°C.

Thermal resistance RTH (j-c): 6.5°C/W

Considering equation (1) we have:

$$\Delta T = 155^{\circ}C - 25^{\circ}C = 130^{\circ}C$$
RTH (j-c) + RTH (c-a) = $\frac{\Delta T}{P} = \frac{130}{10} = 13^{\circ}C/W$
RTH (c-a) = $13^{\circ}C/W - 6.5^{\circ}C/W = 6.5^{\circ}C/W$

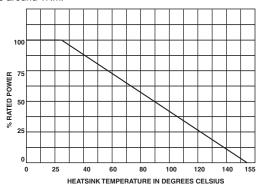
Power Resistor Thick Film Technology



OVERLOADS

In any case the applied voltage must be lower than the maximum overload voltage of 375V.

The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.



POWER RATING CHART

The temperature of the heatsink should be maintained within the limits specified.

To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease and the torque applied on the screw for tightening should be around 1Nm.

MARKING

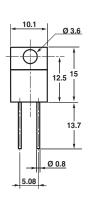
Model, Style, Resistance Value (in Ω), Tolerance (in %), Manufacturing Date, VISHAY trademark.

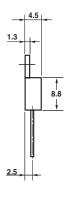
PACKAGING

Tube of 50 units

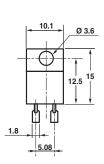
ORDERII	NG INFOR	MATION			
RTO MODEL	20 STYLE	F CONNECTIONS	100k RESISTANCE VALUE	± 10% TOLERANCE	XXX CUSTOM DESIGN
		F: Radial Leads C: Surface Mount		± 1% ± 2% ± 5% ± 10%	Optional on request: special TCR, shape etc.

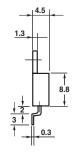
Power Resistor, Thick Film Technology


FEATURES


- 50 Watt at 25°C Heatsink Mounted
- · Adjusted by sand trimming
- · Leaded or surface mount versions
- · High power to size ratio
- · Non inductive element

Because of the knowledge and experience in Thick Film technology, Vishay Sfernice has been able to develop a high power resistor in a TO 220 package called RTO 50. The special design of this component allows the dissipation of 50W when mounted on a heatsink. The ohmic value is adjusted by sand trimming. This process does not generate hot spots as in laser trimming, which could lead to microcracks on each side of the curve. This process improves the reliability and the stability of the resistor and at the same time gives a good overload capability.


DIMENSIONS in millimeters


RTO 50F - LEADED

RTO 50C - FOR SURFACE MOUNTING

• Tolerance unless otherwise specified: ± 0.4mm

MECHANICAL SPECIFICATIONS

Mechanical Protection Molded **Resistive Element** Thick Film Connections Tinned copper alloy

Weight 2g max.

DIMENSIONS

TO 220 Standard Package Insulated Case

ENVIRONMENTAL SPECIFICATIONS

Temperature Range - 55°C to + 155°C **Climatic Category** 55/155/156 Sealing Sealed container

Solder immersion

ELECTRICAL SPECIFIC	ATIONS		
Resistance Range	0.046Ω to 1MΩ		
Tolerances Standard	± 1% to ± 10%		
Dissipation and Associated	Onto a heatsink		
	Onto a riodionin		
Thermal Resistance	50W at + 25°C		
1	Rтн (j-c): 2.6°C/W		
	free air:		
	2.25W at + 25°C		
Temperature Coefficient	See Performance table		
Standard	± 150ppm/°C		
Limiting Element Voltage	300V		
Dielectric Strength	2000VRMS		
Insulation Resistance	$\geq 10^6 \text{M}\Omega$		
Inductance	≤ 0.1 µH		
Critical Resistance	1.8 kΩ		

Power Resistor Thick Film Technology

PERFORMANCE			
TESTS	CONDITIONS	TYPICAL DRIFTS	
Momentary Overload	2Pr/5s Us < 1.5UL	$\leq \pm (0.25\% \pm 0.05\Omega)$	
Climatic Sequence	CEI 68214 Tests Na 5 cycles - 55°C to + 155°C	$\leq \pm (0.5\% \pm 0.05\Omega)$	
Load Life	1000h Pr at + 25°C	≤ ± (1% ± 0.05Ω)	
Humidity (Steady State)	MIL STD 202 Method 103 B Cond. D	$\leq \pm (0.5\% \pm 0.05\Omega)$	
Vibration	MIL STD 202 Method 204 Cond. D	$\leq \pm (0.2\% \pm 0.05\Omega)$	
Terminal Strength	MIL STD 202 Method 211 Cond. A1	$\leq \pm (0.2\% \pm 0.05\Omega)$	
High Temperature Exposure	MIL STD 202 Method 108 A Cond. D 1000 h at	≤ ± (0.5% ± 0.05Ω)	

SPECIAL FEATURES					
Resistance Values $\geq 0.046\Omega$ $\geq 0.1\Omega$ $\geq 0.5\Omega$					
Tolerances	± 1% at ± 10%				
Temperature Standard Coefficient	± 300ppm/°C	± 250ppm/°C	± 150ppm/°C		

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature).

Maximum working temperature must not exceed 155°C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{[R_{TH} (j-c) + R_{TH} (c-a)]} (1)$$

P: expressed in W

T: difference between maximum working temperature and room temperature.

RTH: (j-c): thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component: (Special Features Table)

RTH: (c-a): thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal resistance of the heatsink itself (type, shape) and the quality of the fastening device.

Example:

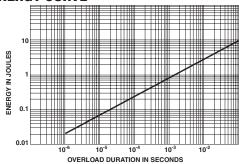
RTH: (c-a) for RTO 50 power rating 13 W at ambient temperature + 30°C.

Thermal resistance RTH (j-c): 25°C/W

Considering equation (1) we have:

$$\Delta T \le 155^{\circ}C - 30^{\circ}C \le 125^{\circ}C$$

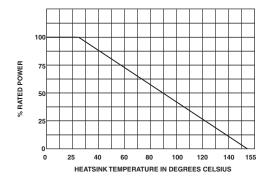
RTH (j-c) + RTH (c-a) = $\frac{\Delta T}{P} = \frac{125}{13} = 9.6^{\circ}C/W$
RTH (c-a) $\le 9.6^{\circ}C/W - 2.6^{\circ}C/W \le 7^{\circ}C/W$


Power Resistor Thick Film Technology

OVERLOADS

The applied voltage must always be lower than the maximum overload voltage of 450V.

The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.


ENERGY CURVE

POWER RATING CHART

The temperature of the heatsink should be maintained within the limits specified.

To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease and the torque applied on the screw for tightening should be around 1Nm.

MARKING

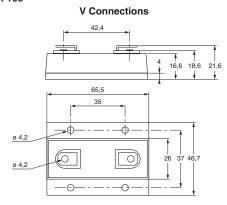
Model, Style, Resistance Value (in), Tolerance (in %), Manufacturing Date, VISHAY trademark.

DA	CK			
PA	<u>un</u>	AG	ш	G

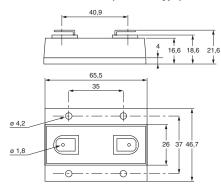
Tube of 50 units

ORDERING INFORMATION						
RTO MODEL	50 STYLE	F CONNECTIONS	100 ${ m k}\Omega$ RESISTANCE VALUE	± 1% TOLERANCE	XXX CUSTOM DESIGN	
		F: Leaded		± 1%	Optional	
		C: Surface Mount		± 2%	on request:	
				± 5%	special TCR,	
				± 10%	shap, etc.	

Power Resistor for Mounting onto a Heatsink Thick Film Technology


FEATURES

- · High power rating
- · Low thermal radiation of the case
- · Wide ohmic value range
- · Easy mounting
- · High overload capabilities
- · Reduced size and weight


This new style has been developed as an extension to RCH range. Through the use of thick film technology, a non-inductive solution for power resistors is available which are rated up to 100W at + 25°C. Two types of terminations are possible: screw or "Faston" type connectors and their position prevents any risk of an electrical arc to the heatsink. This resistor series can replace and offer advantages to standard wirewound devices.

DIMENSIONS in millimeters

RPH 100

F Connections ("Faston" type)

MECHANICAL SPECIFICATIONS

Mechanical Protection Insulated case
Substrate Alumina on metallic base of nickel coated

aluminum

Resistive Element Cermet

End Connections V connections: screws M4 x 6 F connections: Faston type

Tightening Torque Connections 1Nm
Tightening Torque Heatsink 3 Nm
Weight 60q

ENVIRONMENTAL SPECIFICATIONS

Thermal Resistance R_{TH} (j-c) 0.55° C/W Temperature Range -55° C + 125° C Climatic Category 55/125/56

ELECTRICAL SPECIFICA	TIONS
Resistance Range	0.092Ω to $1M\Omega$ E24 series
Tolerances	± 1% to ± 10%
Power Rating:	
Continuous	100W at 25°C
	chassis mounted 0.45°C/W
	10W at 25°C
	Free air
Momentary	400W at 25°C for 5 seconds
Temperature Coefficient	
Standard	± 300ppm/°C < 1Ω
	± 150ppm/°C > 1Ω
Limiting Element Voltage	1900 VRMS
Dielectric Strength	5kV _{RMS}
Insulation Resistance	$> 10^6 M\Omega$
Inductance	< 0.1 μH

Power Resistor for Mounting onto a Heatsink Thick Film Technology

Vishay Sfernice

PERFORMANCE					
TESTS	CONDITIONS	TYPICAL DRIFTS			
Short Time Overload	4 Pn/5 seconds	$< \pm (0.25 \% \pm 0.05 \Omega)$			
Rapid Temperature Change	5 cycles - 55°C + 125°C	$< \pm (0.25 \% \pm 0.05 \Omega)$			
Load Life (chassis mounted 0.45°C/W)	Pn at 25°C 1000 hours	$< \pm (0.5\% \pm 0.05\Omega)$			
Humidity (steady state)	56 days 95% R.H.	$< \pm (0.5\% \pm 0.05\Omega)$			

RESISTANCE VALUE IN RELATION TO TOLERANCE AND TCR			
Ohmic Value	<1Ω	> 1Ω	
Standard Tolerance	± 5%	± 5%	
Standard T.C.R.	± 300ppm/°C	± 150ppm/°C	
Tolerances On Request	± 1% - ± 2%		

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature).

Maximum working temperature must not exceed 125°C. The dissipated power is simply calculated by the following ratios:

$$P = \frac{\Delta T}{[R^{TH}(j-c) + R^{TH} (c-a)]}^{(1)}$$

P: expressed in W

ΔT: difference between maximum working temperature and room temperature.

RTH: (j-c): thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component: 0.55°C/W.

RTH: (c-a): thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal resistance of the heatsink itself (type, shape) and the quality of the fastening device.

Example:

R_{TH:} (c-a) for RPH 100 power rating 80W at ambient temperature + 40°C.

Thermal resistance RTH (j-c): 0.55°C/W

Considering equation (1) we have:

$$\begin{split} \Delta T &\leq 125^{\circ}C - 40^{\circ}C \leq 85^{\circ}C \\ \text{RTH (j-c)} &+ \text{R}_{\text{TH}} \left(\text{c-a}\right) = \frac{\Delta T}{P} = \frac{85}{80} = &1.06^{\circ}\text{C/W} \\ \text{RTH (c-a)} &\leq 1.06^{\circ}\text{C/W} - 0.55^{\circ}\text{C/W} \leq 0.51^{\circ}\text{C/W} \end{split}$$

RECOMMENDATIONS FOR MOUNTING ONTO A HEATSINK

Surfaces in contact must be carefully cleaned.

The heatsink must have an acceptable flatness: from 0.05mm to 0.1mm/100mm.

Roughness of the heatsink must be around 6.3µm.

In order to improve thermal conductivity, surfaces in contact (alumina, heatsink) should be coated with a silicone grease (type SI 340 from Rhône-Poulenc or Dow 340 from Dow Corning).

The fastening of the resistor to the heatsink is under pressure control of four screws (not supplied).

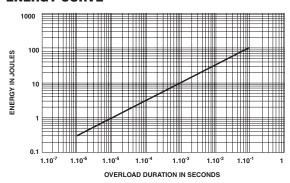
Tightening torque: 3Nm

In order to improve the dissipation, either forced-air cooling or liquid cooling may be used.

Do not forget to respect an insulation value between two resistors (dielectric strength in dry air 1kV/mm).

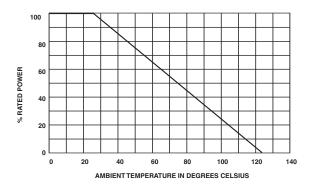
Power Resistor for Mounting onto a Heatsink Thick Film Technology

OVERLOADS


In any case the applied voltage must be lower than 2.5Un.

U maxi < 2Un < 3800V.

Short time overload: 4 Pn/5 seconds.


Accidental overload: The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.

ENERGY CURVE

POWER RATING CHART

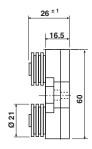
For resistor mounted onto a heatsink with thermal resistance of 0.45°C/W.

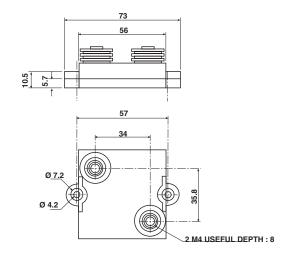
MARKING

Series, style, ohmic value (in Ω), tolerance (in %), manufacturing date, SFERNICE trade mark.

ORDERING INFORMATION					
RPH	100	3.3ΚΩ	± 5%	V	
MODEL	STYLE	RESISTANCE VALUE	TOLERANCE	CONNECTIONS	CUSTOM DESIGN
			Optional ± 1% ± 2 % ± 5%	Optional V: screw M4 F: Faston type	Options on request T.C.R., shape, etc.

Power Resistor for Mounting onto a Heatsink Thick Film Technology


FEATURES


- · High power rating
- · High overload capability
- · Easy mounting
- · Low thermal radiation of the case

Developed for specific applications such as railroad electrical traction, this series can bear short overloads as high as fifteen times the nominal power. Designed to be mounted onto a heatsink, compact and hermetically sealed, these power resistors exhibit remarkable characteristics.

DIMENSIONS in millimeters

RPS 250D

MECHANICAL SPECIFICATIONS

Mechanical Protection Insulated case
Substrate Alumina onto

aluminum base

Resistive Element Cermet

End Connections Screws M4, (M5 on

request)

Tightening Torque on connections 2Nm

Weight 170g ± 10%

ENVIRONMENTAL SPECIFICATIONS

Thermal ResistanceRTH (j-c) 0.22° C/WTemperature Range -55° C + 125° CClimatic Category55/125/56

ELECTRICAL SPECIFICATIONS		
Resistance Range	0.24Ω to 1M E24 series	
Tolerances	± 1% to ± 10%	
Power Rating chassis mounted 250W 1000W	at 50°C continuous at 25°C for 10 seconds	
Temperature Coefficient		
Standard	± 250ppm/°C < 1 ± 150ppm/°C > 1	
Limiting Element Voltage	5kVRMS	
Dielectric Strength	L connections 7kVRMS H connections 14kVRMS	
Insulation Resistance	$> 10^6 M\Omega$	
Inductance	< 50 nH	
Capacitance Resistor /ground	< 40pF < 120pF	

Tolerance unless stated: ± 0.2mm

Power Resistor for Mounting onto a Heatsink Thick Film Technology

PERFORMANCE				
TESTS	CONDITIONS	TYPICAL DRIFTS		
Momentary Overload	4 Pr/10 s	< ± (0.25% ± 0.05Ω)		
Climatic Sequence	5 cycles - 55°C + 125°C	< ± (0.25% ± 0.05)		
Load Life	1000h Pr at 70°C	$< \pm (0.5\% \pm 0.05\Omega)$		
Humidity (steady state)	56 days R.H. 95%	$< \pm (0.5\% \pm 0.05\Omega)$		

RESISTANCE VALUE IN RELATION TO TOLERANCE AND TCR			
Ohmic Value	< 1Ω	> 1Ω	
Standard Tolerance	± 5%	± 5%	
Standard T.C.	± 250ppm/°C	± 150ppm/°C	
Tolerance On Request	± 1% - ± 2% - ± 10%		

CHOICE OF THE HEATSINK

The user must choose the heatsink according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 125°C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{\left[R_{TH}\left(j\text{-c}\right) + R_{TH}\left(c\text{-a}\right)\right]}$$

P: expressed in W

T: difference between maximum working temperature and room temperature.

RTH: (j-c): thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component (see specifications environmental paragraph).

(c-a): thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal resistance of the heatsink, depending on the heatsink itself (type, shape) and the quality of the fastening device.

Example:

RTH: (c-a) for RPS 250 power dissipation 180W at + 50°C room temperature.

$$\Delta T \le 125^{\circ}\text{C} - 50^{\circ}\text{C} \le 75^{\circ}\text{C}$$
RTH (j-c) + RTH (c-a) = $\frac{\Delta T}{P} = \frac{75}{180} = 0.42^{\circ}\text{C/W}$
RTH (j-c) = 0.22°C/W
RTH (c-a) $\le 0.42^{\circ}\text{C/W} - 0.22^{\circ}\text{C/W} \le 0.20^{\circ}\text{C/W}$

RECOMMENDATIONS FOR MOUNTING ONTO A HEATSINK

Surfaces in contact must be carefully cleaned. The heatsink must have an acceptable flatness: from 0.05mm to 0.1mm/100mm. Roughness of the heatsink must be around 6.3µm. In order to improve thermal conductivity, surfaces in contact should be coated with a silicone grease (type SI 340 from Rhône-Poulenc or Dow 340 from Dow Corning).

The fastening of the resistor to the heatsink is under pressure control of two screws (tightening torque 3 Nm).

In order to improve the dissipation, either forced-air cooling or liquid cooling may be used.

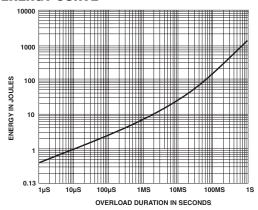
Do not forget to respect an insulation value between two resistors (dielectric strength in dry air 1kV/mm).

In any case the hot spot temperature, measured locally on the case must not exceed 125°C.

Test should be performed by the user.

Power Resistor for Mounting onto a Heatsink Thick Film Technology

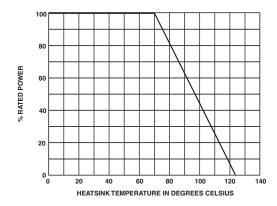
Vishay Sfernice


OVERLOADS

In any case the applied voltage must be lower than 2.5Un. U maxi < 2.5Un < 12500V.

Short time overload: 4 Pn/10 seconds

Accidental overload: The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.


ENERGY CURVE

POWER RATING CHART

The temperature of the heatsink should be maintained in the limit specified.

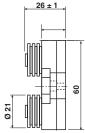
To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease.

MARKING

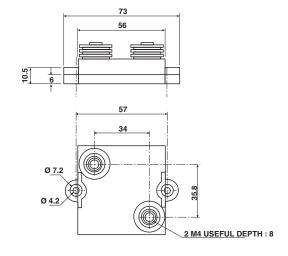
Series. style, ohmic value (in). tolerance in %, manufacturing date, VISHAY trademark

ORDERING INFORMATION					
RPS	250D	Н	100Ω	± 10%	xxx
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN
		Optional H: dielectric strength 14 kV L: dielectric strength 7 kV		Optional ± 1% ± 2% ± 5% ± 10%	Options on request special T.C., shape, etc.

Power Resistors for Mounting onto a Heatsink Thick Film Technology


FEATURES

- · High power rating
- · High overload capability
- · Easy mounting
- · Low thermal radiation of the case
- · No partial discharge


This range has been developed specifically for electrical traction applications and is capable of dissipating 500W at +70°C. The remarkable performance characteristics are evident when used in severe pulse conditions. The copper base allows easy mounting on the heatsink and provides optimal dissipation conditions.

DIMENSIONS in millimeters

RPS 500D

MECHANICAL SPECIFICATIONS

 Mechanical Protection
 Insulated case

 Substrate
 Alumina onto base of nickel coated copper

 Resistive Element
 Cermet

End Connections Screws M4 (M5 on request)

Tightening Torque on Connections 2Nm
Tightening Torque on Heatsink 4Nm
Weight 250g ± 10%

ENVIRONMENTAL

Thermal Resistance RTH (j-c) 0.11°C/W
Temperature Range - 55°C to + 125°C
Climatic Category 55/125/56

ELECTRICAL SPECIFICATIONS			
Resistance Range	0.24 to 1M E24 series		
Tolerances	± 1% to ± 10%		
Power Rating			
Chassis mounted	500W at 70°C continuous		
	1000W at 25°C for 10 seconds		
Temperature Coefficient			
Standard	± 300ppm/°C < 1Ω		
	± 150ppm/°C > 1Ω		
Limiting Element Voltage	5kVRMS		
Dielectric Strength	L:7kVRMS - H: 14kVRMS		
Partial Discharge	Inception voltage 2.5kVRMS		
Insulation Resistance	$> 10^6 M\Omega$		
Inductance	< 50 nH		

Power Resistors for Mounting onto a Heatsink Thick Film Technology

Vishay Sfernice

PERFORMANCE				
TESTS	CONDITIONS	TYPICAL DRIFTS		
Momentary Overload	2Pn/10 seconds	< ± (0.25% ± 0.05Ω)		
Climatic Sequence	5 cycles - 55°C to + 125°C	< ± (0.25% ± 0.05Ω)		
Load Life (chassis mounted)	1000 hours 500 W/70°C	$< \pm (0.5\% \pm 0.05\Omega)$		
Humidity (steady state)	56 days 95% R.H.	$< \pm (0.5\% \pm 0.05\Omega)$		

RESISTANCE VALUE IN RELATION TO TOLERANCE AND TCR			
Ohmic	< 1Ω	> 1Ω	
Standard Tolerance	± 5%	± 5%	
Standard T.C.R.	± 300ppm/°C	± 150ppm/°C	
Tolerance On Request	± 1% - ± 2% - ± 10%		

CHOICE OF THE HEATSINK

The user must choose the heatsink according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 125°C.

The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{[R_{TH} (j-c) + R_{TH} (c-a)]}$$
(1)

P: expressed in W

 Δ T: difference between maximum working temperature and room temperature.

Rth: (j-c): thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component: 0.11°C/W.

RTH: (c-a): thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal resistance of the heatsink, depending on the heatsink itself (type, shape) and the quality of the fastening device.

RECOMMENDATIONS FOR MOUNTING ONTO A HEATSINK

Surfaces in contact must be carefully cleaned.

The heater must have an acceptable flatness: from 0.05mm to 0.1mm/100mm.

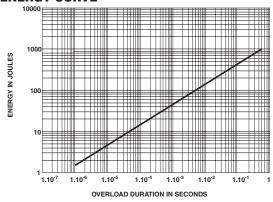
Roughness of the heatsink must be around 6.3µm.

In order to improve thermal conductivity, surfaces in contact (alumina, heatsink) should be coated with a silicon grease (type SI 340 Rhône-Poulenc or Dow Corning).

The fastening of the resistor to the heatsink is under pressure control of two screws. Tightening torque: 4Nm.

The following accessories are supplied with each product: 2 off M 4 x 16, 2 off M4 TE 4 x 0.6 and 2 off M4 washers.

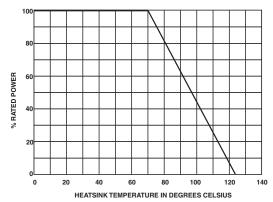
Power Resistors for Mounting onto a Heatsink Thick Film Technology



OVERLOADS

Short time overload: 2Pn/10 seconds

Accidental overload: The values indicated in the graph below are applicable to resistors in air or mounted onto a heatsink.


ENERGY CURVE

POWER RATING CHART

The heatsink temperature should be maintained at the values specified in fig. 2.

To optimise the thermal conduction, contacting surfaces should be coated with silicone grease and heatsink mounting screws tightened to 4Nm.

MARKING

Series, style, ohmic value (in), tolerance (in), tolerance (in %), manufacturing date, VISHAY trade mark.

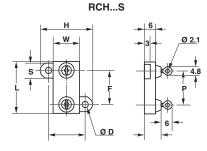
ORDERING	G INFORMA	TION			
RPS	500D	н	100Ω	± 10%	xxx
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN
		Optional H: dielectric strength 14k\ L: dielectric strength 7kV		Optional ± 1% ± 2% ± 5% ± 10%	Options on request T.C.R., shape, etc.

Power Resistors, for Mounting onto a Heatsink Thick Film Technology

Manufactured in cermet thick film technology, these power resistors exhibit remarkable characteristics and the series includes 4 types ranging from 5W to 50W

Designed to be mounted onto a heatsink, the resistors can bear high short time overloads and 3 types of terminations are available.

The resistors are non inductive and are particularly suitable for high frequency operation and cut-out circuits.


FEATURES

- 5 Watt to 50W
- · High power rating
- · High overload capabilities
- · High stability at rated power
- · Wide resistance range
- · High thermal capacity
- Easy mounting
- · Reduced size and weight
- High insulation: $10^6 M\Omega$

DIMENSIONS in millimeters

• General Tolerance: ± 0.3mm

DIMENSIONS				
MODEL	RCH 5	RCH 10	RCH 25	RCH 50
L	16.6	19	28	47.8
W	9	11	14	15.5
Н	16.4	20.6	27.5	29.4
P Leads pitch	10.2	12.7	18.3	30.5
F Connections pitch	11.3	14.3	18.3	39.7
Т	12.5	15.9	19.8	21.4
S	5.3	5	7.7	8
ØD	2.4 M2	2.4 M2	3.2 M3	3.2 M3
WEIGHT (g)	4	5	7	12

RCH

Vishay Sfernice

Power Resistors For Mounting onto a Heatsink Thick Film Technology

MECHANICAL SPECIFICATIONS

Mechanical Protection Insulated Case

Substrate Alumina
Resistive Element Cermet

Connections Tinned copper alloy

ENVIRONMENTAL SPECIFICATIONS

Temperature Range - 55°C to + 125°C

Climatic Category 55/125/56

ELECTRICAL SPECIFICATIONS			
Resistance Range	0.24Ω to $1M\Omega$ E24 series		
Standard Resistance Tolerances	± 1%, ± 2%, ± 5%, ± 10%		
Power Rating			
Chassis Mounted	5W to 50W		
Unmounted	2W to 5.5W		
Temperature Coefficient	± 150ppm/°C (R > 1Ω)		
Insulation Resistance	$10^6\mathrm{M}\Omega$		
Total Inductance	≤ 0.1µH		

PERFORMANCE				
TESTS	CONDITIONS	TYPICAL DRIFTS		
Momentary Overload	2Pr/5s Us < 2 UL	$< \pm (0.25\% \pm 0.05\Omega)$		
Climatic Sequence	5 cycles nominal power Pn - 55°C to + 155°C	$< \pm (0.25\% \pm 0.05\Omega)$		
Load Life	1000h Pr at + 25°C	$< \pm (0.5\% \pm 0.05\Omega)$		
Humidity (Steady State)	56 days R.H. 95%	$< \pm (0.5\% \pm 0.05\Omega)$		

RESISTANCE VALUE IN RELATION TO TOLERANCE AND TCR		
Resistance Value	< 1Ω	> 1Ω
Standard Tolerances	± 5% ± 10%	
Standard T.C.	± 250ppm/°C ± 150ppm/°C	
Tolerance on Request	± 1% to ± 2%	

SPECIAL FEATURES				
MODEL	RCH 5	RCH 10	RCH 25	RCH 50
Power Rating-Chassis Mounted	5W	10W	25W	50W
Power Rating-Unmounted	2W	2.5W	4W	5.5W
Thermal Resistance RTH (j-c)	4.8°C/W	3.2°C/W	1.4°C/W	0.8°C/W
Limiting Element Voltage (VRMS)	160V	250V	550V	1285V
Max. Overload Voltage (VRMS)	320V	500V	1100V	2500V
Dielectric Strength (VRMS) 50Hz	3000V	3000V	3500V	3500V
Critical Resistance	5120Ω	6250Ω	12100Ω	33024Ω

Power Resistors For Mounting onto a Heatsink Thick Film Technology

Vishay Sfernice

RECOMMENDATIONS FOR MOUNTING ONTO A HEATSINK

Surfaces in contact must be carefully cleaned.

The heatsink must have an acceptable flatness: from 0.05mm to 0.1mm/100mm.

Roughness of the heatsink must be around 6.3μm. In order to improve thermal conductivity, surfaces in contact (alumina, heatsink) are coated with a silicone grease (type SI 340 from Rhône-Poulenc or Dow 340 from Dow Corning).

The fastening of the resistor to the heatsink is under pressure control of two screws (not supplied).

Tightening Torque	RCH 5	RCH 10	RCH 25	RCH 50
on heatsink	0.5Nm	0.6Nm	0.7Nm	1Nm

In order to improve the dissipation, either forced-air cooling or liquid cooling may be used.

A low thermal radiation of the case allows several resistors to be mounted onto the same heatsink.

Do not forget to respect an insulation value between two resistors (dielectric strength in dry air 1kV/mm).

In any case the hot spot temperature, measured locally on the case must not exceed 125°C.

Tests should be performed by the user.

CHOICE OF HEATSINK

The user must choose the heatsink according to working conditions of the component (power, room temperature). Maximum working temperature must not exceed 125°C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{[RT_H(j-c) + RT_H(c-a)]}$$

P: Expressed in W

ΔT: Difference between maximum working temperature and room temperature.

RTH: (j-c): Thermal resistance value measured between resistance layer and outer side of the resistor.

It is the thermal resistance of the component (See Special Features table).

RTH: (c-a): Thermal resistance value measured between outer side of the resistor and room temperature.

It is the thermal resistance of the heatsink depending on the heatsink itself (type, shape) and the quality of the fastening device.

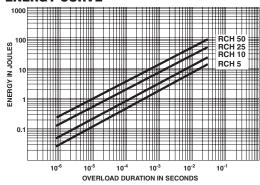
Example:

RTH: (c-a) for RCH 25 power rating 20W at ambient temperature + 50°C.

$$\Delta T \le 125^{\circ}C - 50^{\circ}C \le 75^{\circ}C$$

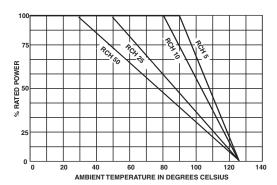
R_{TH} (j-c) + R_{TH} (c-a) =
$$\frac{\Delta T}{P} = \frac{75}{20} = 3.75$$
°C/W

R_{TH} (c-a)
$$\leq 3.75$$
°C/W - 1.4 °C/W ≤ 2.35 °C/W


Power Resistors For Mounting onto a Heatsink Thick Film Technology

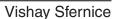
OVERLOADS

The applied voltage must always be lower than the maximum overload voltage as shown in the special features table. The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.


ENERGY CURVE

POWER RATING CHART

For resistors mounted onto heatsink and thermal resistance of 1°C/W.


To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease.

MARKING

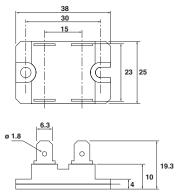
Model, Style, Resistance Value (in), Tolerance (in %), Manufacturing Date, VISHAY trade mark.

ORDERING INFORMATION					
RCH	25	3.3k	± 5%	R	xxx
MODEL	STYLE	RESISTANCE VALUE	TOLERANCE	CONNECTIONS	CUSTOM DESIGN
			Optional ± 1% ± 2% ± 5% ± 10%	Optional S: Flat with hole R: Round lead V: M2 screw	Optional

Power Resistors for Mounting onto a Heatsink Thick Film Technology

FEATURES

- Up to 4 different ohmic values in the same case
- 1% tolerance available
- High power rating
- · Wide ohmic value range
- · Non inductive
- Easy mounting
- · Low thermal radiation of the case
- · Standard Isotop case (SOT 227 B)


This series of thick film power resistors include modules which can incorporate up to 4 different resistor values in the same SOT 227B package. Two types of terminations are available along with a 4 terminal device for measurement applications in the case of the single resistor version. This product range benefits from Vishay Sfernice's experience in thick film power resistor technology i.e high power: volume ratio, low tolerance or individual resistors and excellent overload capabilities (due to the trimming technique).

DIMENSIONS in millimeters

RTOP

V Connections 10 12.5 15 30 38

F Connections ("Faston" type)

MECHANICAL SPECIFICATIONS

Mechanical Protection

Insulated case

Substrate

Alumina on insulated base (excluding QRTOP series)

Resistive Element

Cermet

End Connections

V connections: screw M4 x 6 F connections: Faston type

Tightening Torque Connections 1 Nm Tightening Torque Heatsink 2 Nm

ENVIRONMENTAL SPECIFICATIONS

Temperature Range - 55°C to + 125°C **Climatic Category** 55/125/56

ELECTRICAL SPECIFICATIONS				
Resistance Range	0.046 to 1MΩ			
Standard Tolerance	± 1% to ± 10%			
Power Rating	20W to 200W at + 25°C			
Temperature Coefficient				
Standard	± 300 ppm/°C (R < 1)			
	± 150 ppm/°C (R > 1)			
Insulation Resistance	> 10 ⁶ MΩ			

[•] Tolerances unless otherwise specified: \pm 0.3mm

Power Resistors for Mounting onto a Heatsink Thick Film Technology

PERFORMANCE						
TESTS	CONDITIONS	TYPICAL DRIFTS				
Momentary Overload	2.5Pn/5 seconds	< ± (0.25% ± 0.05Ω)				
Rapid Temperature Change	5 cycles - 55°C +125°C	< ± (0.25% ± 0.05Ω)				
Load Life	Pn at 25°C 1000 hours	$< \pm (0.5\% \pm 0.05\Omega)$				
Humidity (steady state)	56 days 95% R.H.	$< \pm (0.5\% \pm 0.05\Omega)$				

SPECIAL FEATURES									
MODEL	RTOP 200	RTOP 100	DRTOP 100	DRTOP 50	TRTOP 40	TRTOP 30	QRTOP 35	QRTOP 20	
Power Rating at + 25°C chassis mounted resistors unmounted resistors Thermal Resistance (per resistor)	200W 5W	100W 5W	100W 3.5W 0.5°C/W	50W 3.5W	40W 2W	30W 2W	35W 1.5W	20W 1.5W	
Limiting Voltage	1500V	1500V	500V	500V	300V	300V	300V	300V	
Dielectric Strength connections/chassis	2500V	2500V	2500V	2500V	2500V	2500V	base =	common	
Dielectric Strength connections/resistors	-	-	4000V	4000V	4000V	4000V	4000V	4000V	
Ohmic Value Range	0.046 to 1MΩ		0.092 to 1MΩ		0.046 to 1MΩ		0.046 to 1MΩ		
Tolerance	± 1% to ± 10%		± 1% to ± 10%		± 1% to ± 10%		± 1% to ± 10%		
Electrical Diagrams	OR-Shunt Version		0 R1				Grounded base		

Power Resistors for Mounting onto a Heatsink Thick Film Technology

Vishay Sfernice

CHOICE OF HEATSINK

The user must choose the heatsink according to the working conditions of the component (power, room temperature).

Maximum working temperature must not exceed 125°C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{[R_{TH} (j-c) + R_{TH} (c-a)]} (1)$$

P: expressed in W

 ΔT : difference between maximum working temperature and room temperature.

RTH: (j-c): thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component (see Table Special Features).

Rth: (c-a): thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal resistance of the heatsink depending on the heatsink itself (type, shape) and the quality of the fastening device.

Example:

RTH: (c-a) for RTOP 200 power rating 130W at ambient temperature + 30°C.

Thermal resistance (see table 1) RTH (j-c): 0.5°C/W

$$\begin{split} \Delta T &\leq 125^{\circ}C - 30^{\circ}C - 295^{\circ}C \\ RTH \text{ (j-c)} &+ RTH \text{ (c-a)} = \frac{\Delta T}{P} = \frac{95}{130} = 0.73^{\circ}\text{C/W} \\ RTH \text{ (j-c)} &\leq 0.5^{\circ}\text{C/W} \\ RTH \text{ (c-a)} &\leq 0.73^{\circ}\text{C/W} - 0.5^{\circ}\text{C/W} \leq 0.23^{\circ}\text{C/W} \end{split}$$

RECOMMENDATIONS FOR MOUNTING ONTO A HEATSINK

Surfaces in contact must be carefully cleaned.

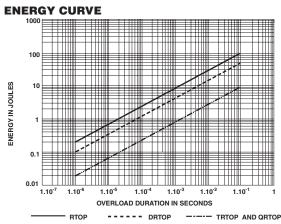
The heatsink must have an acceptable flatness: from 0.05mm to 0.1mm/100mm.

Roughness of the heater must be around 6.3µm.

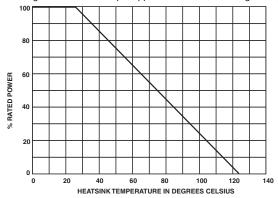
In order to improve thermal conductivity, surfaces in contact (alumina, heatsink) are laid on with a silicone grease (type SI 340 from Rhône-Poulenc or Dow 340 from Dow Corning).

Tightening torque on heater: 2 Nm

For the electrical connections, it is recommended to use M4 x 6 screws and if necessary a washer of 1mm thickness. The recommended screw tightening torque is 1 Nm.


Power Resistors for Mounting onto a Heatsink Thick Film Technology

OVERLOADS


The applied power is 2.5 x rated power for 5 s with a max voltage of 2 x nominal voltage.

Accidental overload: The values indicated in the graph below are applicable to resistors in air or mounted onto a heatsink. In case of multi-resistor devices, (DRTOP, TRTOP and QRTOP) the results apply to each resistor value in the device.

POWER RATING CHART

The temperature of the heater should be maintained in the limit specified. To improve the thermal conductivity, surfaces in contact should be laid on with a silicon grease and the torque applied on the screw for tightening should be around 2 Nm.

MARKING

Series, style, ohmic value (in), tolerance (in %), manufacturing date, VISHAY trade mark.

ORDERING INFORMATION									
RTOP 200		3.2	± 1%		± %	V			
		 R1	T1	R2	T2				
MODEL	STYLE	OHMIC VALUE	ABSOLUTE TOLE	ERANCE PER I	RESISTOR	CONNECTIONS	CUSTOM DESIGN		
RTOP	100		Optional	To be p		V: Screw	Optional		
DRTOP	50		± 1%	for e		F: "Faston" type			
TRTOP	40		± 2%	resis	stor	VS} RTOP			
QRTOP	30		± 5 %			FS} Shunt			
	35		± 10 %						
	20								

DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENTS

THE AMERICAS

VISHAY AMERICAS

ONE GREENWICH PLACE SHELTON, CT 06484 UNITED STATES PH: +1-402-563-6866 FAX: +1-402-563-6296

ASIA

VISHAY INTERTECHNOLOGY

ASIA PTE LTD. 25 TAMPINES STREET 92

KEPPEL BUILDING #02-00 SINGAPORE 528877 PH: +65-6788-6668 FAX: +65-6788-0988

JAPAN

VISHAY JAPAN CO., LTD.

SHIBUYA 3F, GE EDISON BUILDING

3-5-16 SHIBUYA SHIBUYA-KU TOKYO 150-0002 JAPAN PH: +81-3-5464-6411 FAX: +81-3-5464-6433

EUROPE

VISHAY ELECTRONIC GMBH

GEHEIMRAT-ROSENTHAL-STR. 100 95100 SELB GERMANY

PH: +49-9287-71-0 FAX: +49-9287-70435

VISHAY S.A.

4, RUE DE SALONIQUE 95101 ARGENTEUIL FRANCE PH: +33-1-39-98-22-00

FAX: +33-1-39-98-22-05

VISHAY LTD.

PALLION INDUSTRIAL ESTATE SUNDERLAND, SR4 6SU GREAT BRITAIN

PH: +44-191-514-4155 FAX: +44-191-567-8262

ONLINE INFORMATION

For product information and a current list of sales offices, representatives and distributors, visit our website:

www.vishav.com

ONE OF THE WORLD'S LARGEST MANUFACTURERS OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENTS

VISHAY INTERTECHNOLOGY, INC.

World Headquarters

63 Lincoln Highway Malvern, PA 19355-2143 United States

www.vishay.com

© Copyright Vishay Intertechnology, Inc.
Registered Trademarks of Vishay Intertechnology, Inc.
All rights reserved. Printed in the United States.
Specifications subject to change without notice.

Databook VSD-DB0019-0302